Fluid and Melt Inclusions:
Applications to Geologic Processes

Mineralogical Association of Canada
Topics in Mineral Sciences Volume 49

Published by the
Mineralogical Association of Canada (MAC)

by

Pilar Lecumberri-Sanchez
and
Matthew Steele-MacInnis
Department of Earth and Atmospheric Sciences,
University of Alberta,
Edmonton, Alberta, T6G 2E3

and

Daniel Kontak
Harquail School of Earth Sciences,
Laurentian University
935 Ramsey Lake Road,
Sudbury, Ontario, P3E 2C6

Short Course sponsored by the Mineralogical Association of Canada,
and delivered at the GAC-MAC meeting, London, Ontario, May 2021
TABLE OF CONTENTS

Preface vii

1. Constraining fluid and diagenetic events in sedimentary basins by combining fluid inclusion data with burial models: discussions and recommendations – Jacques Pironon 1

2. Applications of fluid inclusions in structural diagenesis – András Fall 17

3. Applications of fluid inclusions to studies of sediment-hosted base metal ore deposits: case studies from the Central U.S.A. and Brazil – Martin S. Appold 47

4. Characterizing fluid and melt in high-grade metamorphic rocks – Omar Bartoli 73

5. Fluid and melt inclusions in diamond as insight into mantle processes – Evan Smith 109

6. A review of silicate and sulfide melt inclusions in felsic and mafic plutonic rocks: examples and practical aspects of study – Jacob Hanley, Kevin Neyedley & Fergus Tweedale 123

7. A protocol and review of methods to select, analyze and interpret melt inclusions to determine pre-eruptive volatile contents in magmas – Rosario Esposito 163

10. Applications of fluid and melt inclusions to magmatic-hydrothermal ore deposits – Simone E. Runyon 263
DETAILED LIST OF CONTENTS

1. **CONSTRAINING FLUID AND DIAGENETIC EVENTS IN SEDIMENTARY BASINS BY COMBINING FLUID INCLUSION DATA WITH BURIAL MODELS: DISCUSSIONS AND RECOMMENDATIONS**
 – Jacques Pironon

 INTRODUCTION 1
 IMMISCIBILITY APPLIED TO BASINAL FLUIDS 2
 THEORY OF INTERSECTING ISOCHORES – APPLICABILITY TO BASINAL FLUIDS 3
 BASIN MODELLING – THEORY, LIMITATIONS AND APPLICATIONS TO FLUID INCLUSION STUDIES 5
 CASE STUDIES
 Case 1: Gas reservoir with coexisting aqueous and gas inclusions 7
 Case 2: Oil reservoir with coexisting aqueous and black oil inclusions 7
 Case 3: Coexisting aqueous and hydrocarbon inclusions with high ΔT_h 9
 Case 4: Fluid inclusion trapping conditions out of the gradient range 10
 Case 5: Absence of oil and gas inclusions 12
 CONCLUSION
 Summary 12
 Benefits 12
 Limitations 12
 REFERENCES 14

2. **APPLICATIONS OF FLUID INCLUSIONS IN STRUCTURAL DIAGENESIS**
 – András Fall

 INTRODUCTION 17
 STRUCTURAL DIAGENESIS AND FLUID INCLUSIONS 17
 FRACTURE CEMENT AND FLUID INCLUSION PETROGRAPHY 21
 MICROTERMOMETRY 28
 MICROBAROMETRY 33
 TIMING OF FRACTURE OPENING AND CEMENTATION 36
 SUMMARY 39
 REFERENCES 40

3. **APPLICATIONS OF FLUID INCLUSIONS TO STUDIES OF SEDIMENT-HOSTED BASE METAL ORE DEPOSITS: CASE STUDIES FROM THE CENTRAL U.S.A. AND BRAZIL**
 – Martin S. Appold

 INTRODUCTION 47
 LA–ICP–MS STUDIES OF MVT DEPOSITS IN THE CENTRAL U.S. 49
 MVT deposits of the Ozark Plateau 50
 Illinois–Kentucky district 55
 LA–ICP–MS STUDIES OF OTHER SEDIMENT-HOSTED BASE METAL DEPOSITS 61
 SEM–EDS STUDY OF THE ILLINOIS–KENTUCKY DISTRICT 62
 RAMAN SPECTROSCOPY STUDIES OF CENTRAL U.S. MVT DEPOSITS 65
 CONCLUDING SUMMARY 66
 REFERENCES 67
4. CHARACTERIZING FLUID AND MELT IN HIGH-GRADE METAMORPHIC ROCKS – OMAR BARTOLI

INTRODUCTION 73
SETTING THE SCENE 74
Terminology 74
Timing of inclusion entrapment 75
Changing the viewpoint: entrapment of melt inclusions upon heating 75
Supercritical liquid 76
EXAMPLES OF FLUID AND MELT INCLUSION STUDIES IN HT–UHT METAMORPHIC TERRAINS 76
 Kerala Khondalite Belt, South India 76
 Ronda, southeast Spain 80
 Ivrea Zone, northwest Italy 81
 Athabasca Granulite Terrane, Canada 82
 Bohemian Massive (central Europe) 82
 Dronning Maud Land, Antarctica 83
EXAMPLES OF FLUID AND MELT INCLUSION STUDIES IN HP–UHP METAMORPHIC TERRAINS 83
 Bohemian Massive (central Europe) 83
 Kokchetay Massif, Kazakhstan 84
 Dora Maira Massif, western Italy 85
 Lago de Cignana, northwest Italy 86
 Dabie-Sulu, China 86
 Sulu Block 87
 Dabie Block 87
EXAMPLES OF FLUID AND MELT INCLUSION STUDIES IN CRUSTAL XENOLITHS AND ENCLAVES 88
 El Hovazo, southeast Spain 88
 Pamir, Asia 89
IMPLICATIONS OF FLUID AND MELT INCLUSION STUDIES FOR GEOCHEMICAL DIFFERENTIATION 89
 Shedding light on the mechanisms of crustal melting 89
 Shedding light on the processes responsible for crustal magma differentiation 90
 Testing and improving the models 93
 Melt–fluid immiscibility, extent of carbonic metamorphism and implications for the geological carbon cycle 93
 Element recycling in subduction zones 95
REFERENCES 97

5. FLUID AND MELT INCLUSIONS IN DIAMOND AS INSIGHT INTO MANTLE PROCESSES – EVAN M. SMITH

INTRODUCTION 109
PRIMARY MELT AND FLUID INCLUSIONS 110
 Fibrous diamond 110
 Gemmy lithospheric diamonds 112
 Methane in mixed-habit cuboctahedral diamonds 113
 Hydrous fluid and ice VII 113
 Metallic melt in sublithospheric diamonds 113
FLUIDS ACCOMPANYING SOLID INCLUSIONS 114
 Hydrous fluid films around silicate inclusions 114
 Hydrogen and methane in sublithospheric diamonds 115
8. **Contributions of Fluid Inclusions to Genetic Models for Mineral Deposits – Matthew Steele-MacInnis, Pilar Lecumberri-Sanchez, Dan Marshall & Daniel J. Kontak**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>Ore-Forming Hydrothermal Fluids</td>
<td>196</td>
</tr>
<tr>
<td>Parameters key to hydrothermal mineralization</td>
<td>197</td>
</tr>
<tr>
<td>Ligands</td>
<td>198</td>
</tr>
<tr>
<td>Temperature/pressure/density</td>
<td>198</td>
</tr>
<tr>
<td>Metals</td>
<td>198</td>
</tr>
<tr>
<td>Sulfur</td>
<td>198</td>
</tr>
<tr>
<td>Phase state</td>
<td>199</td>
</tr>
<tr>
<td>Fluid evolution</td>
<td>199</td>
</tr>
<tr>
<td>Key signatures of geologic fluid types</td>
<td>199</td>
</tr>
<tr>
<td>Meteoric water</td>
<td>199</td>
</tr>
<tr>
<td>Seawater</td>
<td>199</td>
</tr>
<tr>
<td>Basinal (connate) brine</td>
<td>200</td>
</tr>
<tr>
<td>Metamorphic fluids</td>
<td>201</td>
</tr>
<tr>
<td>Magmatic fluids</td>
<td>201</td>
</tr>
<tr>
<td>Analysis of Fluid Inclusions</td>
<td>202</td>
</tr>
<tr>
<td>Petrography of fluid inclusions</td>
<td>202</td>
</tr>
<tr>
<td>Insights obtainable from fluid inclusions</td>
<td>203</td>
</tr>
<tr>
<td>Ligands</td>
<td>203</td>
</tr>
<tr>
<td>Temperature/pressure/density</td>
<td>204</td>
</tr>
<tr>
<td>Major cations and ore metals</td>
<td>204</td>
</tr>
<tr>
<td>Sulfur</td>
<td>206</td>
</tr>
<tr>
<td>Phase state</td>
<td>206</td>
</tr>
<tr>
<td>Fluid evolution</td>
<td>206</td>
</tr>
<tr>
<td>Fluid inclusion "types"</td>
<td>207</td>
</tr>
<tr>
<td>Inclusion types based on phase assemblage and phase ratios</td>
<td>207</td>
</tr>
<tr>
<td>Relationships between fluid inclusion types and categories of geologic fluids</td>
<td>209</td>
</tr>
<tr>
<td>Petrographic and genetic relationships between fluid inclusion types</td>
<td>210</td>
</tr>
<tr>
<td>Systematics of Fluid Inclusions in Hydrothermal Ore Deposits</td>
<td>212</td>
</tr>
<tr>
<td>Epithermal deposits</td>
<td>212</td>
</tr>
<tr>
<td>VMS deposits</td>
<td>212</td>
</tr>
<tr>
<td>Mississippi Valley-type deposits</td>
<td>213</td>
</tr>
<tr>
<td>Orogenic (Au±W±Sb) deposits</td>
<td>213</td>
</tr>
<tr>
<td>Porphyry deposits</td>
<td>213</td>
</tr>
<tr>
<td>Fluid inclusion types</td>
<td>213</td>
</tr>
<tr>
<td>Ligands</td>
<td>214</td>
</tr>
<tr>
<td>Temperature/pressure/density</td>
<td>216</td>
</tr>
<tr>
<td>Major cations and ore metals</td>
<td>219</td>
</tr>
<tr>
<td>Sulfur</td>
<td>221</td>
</tr>
<tr>
<td>Phase state</td>
<td>222</td>
</tr>
<tr>
<td>Fluid evolution</td>
<td>223</td>
</tr>
<tr>
<td>Key Contributions to Genetic Models</td>
<td>225</td>
</tr>
<tr>
<td>Fluid sources and temperatures</td>
<td>225</td>
</tr>
<tr>
<td>Fluid evolution and thermodynamic modeling</td>
<td>227</td>
</tr>
<tr>
<td>Triggers for mineralization</td>
<td>230</td>
</tr>
<tr>
<td>Conclusions</td>
<td>233</td>
</tr>
<tr>
<td>References</td>
<td>233</td>
</tr>
</tbody>
</table>
INTRODUCTION 243

POTENTIAL APPLICATIONS OF FLUID INCLUSIONS IN EXPLORATION 244

METHODS 245

Sampling 245
Sample preparation 245
Crushing stage 246
Basic fluid inclusion types 247

FLUID INCLUSIONS ASSOCIATED WITH MAGMATIC–HYDROTHERMAL SYSTEMS 248

A conceptual model 248
Porphyry epithermal systems 249
Zonation in porphyry systems 249
Ore location and fertility indicators in porphyry systems 250
Zonation in epithermal systems 251
Reliability of the model for porphyry epithermal systems and sources of variability 253
Volcanogenic massive sulfide deposits 253

OROGENIC GOLD 255
SUMMARY 255
REFERENCES 257

INTRODUCTION 263

OVERARCHING THEMES AND OPEN QUESTIONS 263

Compositions of hydrothermal fluids 263
Chloride complexes 264
Sulfur-bearing species 265
H2O and low density vapors 265
Carbon-bearing species in melts and magmatic-hydrothermal fluids 265
Fluorine 266
Dominant (non-ore metal) cations in common crustal fluids 266
Sources of metals in magmatic–hydrothermal ore deposits 267
Metal partitioning: Behavior of ore metals in various geologic environments 267
Partitioning in the presence of melt(s) 267
Partitioning between liquid and vapor phases 268
Barren vs. productive systems 268
The magmatic-hydrothermal transition 269

PORPHYRY COPPER (±Mo ±Au) DEPOSITS 270
General characteristics 270
Evolution of ore-forming fluids 270
Post ore-deposition alteration 271
Metal contents of fluid inclusions 271
Open questions and future research avenues 271
Sources of metals 271
CO2 in deep portions of porphyry systems 272
Melt inclusions in hydrothermal veins 272
Salt (halite) melt and hypersaline inclusions in porphyry systems 272
Alkaline Porphyry Cu–Au Deposits and Associated Epithermal Systems

PORPHYRY Mo DEPOSITS
General characteristics
Evolution of ore-forming fluids
Ore precipitation mechanisms
Interpretation of C-bearing species in porphyry Mo fluid inclusions

PORPHYRY Sn–W–Mo, GREISEN, AND LODE DEPOSITS
General characteristics
Evolution of ore-forming fluids

INTRUSION-RELATED GOLD DEPOSITS
General characteristics
Evolution of ore-forming fluids
Potential importance of polymetallic melts
Orogenic gold: General characteristics and similarities to intrusion-related gold deposits

RARE METAL DEPOSITS
Carbonatite-related systems
Immiscibility: Evidence for coexisting melt(s) and fluid(s)
Rare-metal, granite- and pegmatite-related deposits: Peralkaline and peraluminous systems
Immiscibility: Evidence for coexisting melt(s) and fluid(s)

HIGH SULFIDATION EPITHERMAL DEPOSITS
General characteristics
Evolution of ore-forming fluids
Sources of metals and fluids in high-sulfidation epithermal systems

IOCG: IRON OXIDE-COPPER-GOLD
General characteristics
Evolution of ore-forming fluids
Early high-temperature alteration
Ore mineralization
Late hydrolytic alteration
Evidence for involvement of magmatic vs. non-magmatic hydrothermal components

THE FUTURE OF FLUID INCLUSIONS IN MAGMATIC–HYDROTHERMAL ORE DEPOSIT RESEARCH

REFERENCES